菱形和矩形的交集是正方形。集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集。那么有一个图形既是菱形又是矩形,就只有正方形了。
在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形,菱形的对角线互相垂直平分且平分每一组对角,菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形是中心对称图形。
矩形是至少有三个内角都是直角的四边形。矩形是一种特殊的平行四边形,正方形是特殊的矩形。矩形的常见判定方法如下:(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形。(3)有三个角是直角的四边形是矩形。(4)定理:经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。(5)对角线相等且互相平分的四边形是矩形。